欢迎来到小小范文网!

初中数学教学案例(合集四篇)

初中 时间:2024-02-11

【www.xxkjfw.com--初中】

案例,就是人们在生产生活当中所经历的典型的富有多种意义的事件陈述。以下是小编整理的初中数学教学案例(合集四篇),仅供参考,希望能够帮助到大家。

第一篇: 初中数学教学案例

一、案例

师:同学们,我们已经学习了两步计算的应用题(揭题)。刚才,朱军向我请教一道题目,我想请同学们来一齐完成这道题:(出示错应用题例)凤山中心小学六年级有145人参加数学兴趣小组活动,余下的参加其它兴趣小组,参加其它兴趣小组的有多少人

(教师鼓励学生解这道题,看谁做得又对又快,大部分学生表现茫然,坐着不动。)

师:同学们怎样不做啊

生1:教师,这道题没法做啊。

生2:教师,你可能把这道题目记错了。

生3:可能是朱军把题目抄错了。

生4:教师教育我们做题时要细心,朱军怎样还把题目抄错呢真是太粗心了。

师:哦,原先是这样,难怪好多同学坐着不动,那这道题是没法做了

生1:有办法,只要加一个条件。

生2:这朱军太粗心了,浪费了我们的学习时间。

生3:这样也好,它能够提醒我们,做任何事都要细心一点才好。

生4:我想,可能是教师有意出这样的错题考我们的。

师:(微笑)不管是谁的错,做事还是要细心的好,那么,这道题按刚才生1说的,只要加一个条件就能够了,你们大家说行吗

生:(齐答)行。

师:需要怎样的条件呢

生1:只要加上一个“六年级一共有多少人”就能够了。

生2:加上“六年级一共有多少人”,虽然能求出“参加其它兴趣小组的有多少人”,但这不是两步计算的应用题。

生3:如果明白“六年级有几个班,平均每班有几人”,就能经过两步计算,求出“参加其它兴趣小组的有多少人”了。

师:同学们,刚才两种方法都能解决问题,说明你们都善于思考,但哪一种方法更贴合题目的要求呢

生4:因为是两步计算的应用题,所以我赞成生3的意见。

师:你们认为所加条件的数据,我倒清楚,“六年级有5个班,平均每班63人”。同学们,此刻你们觉得能够解答了吗如果能够,请同学们思考一下,把这道题先补充完整,一会儿我们来交流。

(学生认真思考,有的试着口头编题,有的同桌讨论,互相交流,个个兴趣盎然。)

师:谁来把这道题补充完整

(学生陆陆续续举起手来,教师见生1欲举又止,并用鼓励的目光看了看生1,他鼓起勇气举起了手。)

生1:凤山中心小学六年级5个班,平均每班63人。其中有145人参加数学兴趣小组,余下的参加其它兴趣小组,参加其它兴趣小组的有多少人

师:生1把这道题补充得很完整,我们掌声鼓励一下。(学生鼓掌)

二、反思

《数学新课程标准》指出,学生的学习资料应当是现实的、有意义的、具有挑战性的。教师要努力供给与学生实际生活有关的信息材料,让学生从被动理解知识向主动参与学习的全过程转化。这则案例对我有三点启发。

1.巧设问题情境,激发探究欲望。

心理学研究证明:问题意识是思维的起点,没有问题的思维是肤浅的、被动的思维,仅有当个体活动感到自我需要问“为什么”、“是什么”、“怎样办”的时候,这种思维才算是真正的启动。所以,教师要经过多种途径努力创造问题情境,营造氛围,使学生感到有疑要问,有话要说,这样才有利于学生思维创新和自主本事的发展,才有利于学生养成想问、要说、好思的良好习惯。

2.充分尊重学生,树立学习信心。

在教学过程中,教师的一句话、一个眼神、一个手势,运用得当,能鼓励学生,调动学生学习进取性,使胆小的学生变得勇敢、自信;运用失当,将挫伤学生的学习进取性。教师在教学过程中,不仅仅要注重知识的传授,技能的培养,并且要重视对学生情感的培养,帮忙他们增强克服困难的勇气,树立学习的自信心。学生出现错误时,既怕同学笑话,又怕教师批评,心理压力很大。这时,教师不能指责学生,否则就容易挫伤学生的学习进取性,就会扼杀学生的自信心。教师要学会宽容,给学生以面子,细心翼翼地呵护他们的情感,帮忙他们寻找错误的原因,并加以引导,真正成为学生学习道路上的良师益友。

3.启发学生思维,培养说话本事。

在数学教学中,异常是应用题教学中,重视学生的自主精神,让学生充当课堂学习的主人,鼓励学生在主动探究的基础上,阐述自我的思维过程,这是新时期课改的要求。首先,这节课上,教师一改传统的教学模式,故意设置问题情境,让学生在教师设置的错题中,发现问题,进而主动思考,发表看法和想法,并提出解决问题的办法;其次,教师供给的数学信息来自学生的生活(不完整题例),学生看得见,摸得着,并且易于解决。这样就巩固和提高了解答两步应用题的本事,并且学生在辨析、讨论、交流的过程中容易品尝成功的喜悦;最终,小学生由于年龄小,在计算、解答的过程中出现类似于以上错误题例的现象时有发生,教师应及时抓住这种信息源,把日常见到的,并且是学生易错的问题,经过题例的形式,呈现给学生,由学生在质疑、发问、思考、交流的过程中,启动心灵,受到震动,得到教育。这样不仅仅能起到“润物细无声”的效果,并且能融知识性和人文性于一体,可谓一举两得。

总之,在数学教学过程中,教师要激发学生的学习兴趣,努力为学生搭建一个合作探究、互相交流的平台,营造一种民主的研讨氛围,让学生的思想自由地驰骋,让学生创新的火花自然地喷发,要求学生口述思维过程,发展学生的语言表达本事。即使学生出现错误,教师也要宽容,真诚地帮忙学生,让每一位学生真正体验到学习成功的欢乐。

第二篇: 初中数学教学案例

一教学目标

1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力

二教学重点

理解正比例函数的概念

三教学难点

利用正比例函数解决生活实际问题

四教学过程【提出问题】

1.《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。(1)阿甘大约平均每天跑步多少千米?

(2)阿甘的行程y(km)与时间x(天)之间有什么关系?(3)阿甘一个月(30天)的行程是多少千米?【生】列算式回答【师】点评总结

2.写出下列变量间的函数表达式

(1)正方形的周长l和半径r之间的关系

【进一步抽象问题让学生思考】(2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?(3)下列函数关系式有什么共同点?(小组合作)

【分析共同点和不同点,找出规律】(1)y=200x

(2)l=2∏r(3)m=7.8V【生回答,师点评】【引入新课】

1.正比例函数的概念:

一般地,形如y=kx(k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】2【例题讲解】

例1在同一坐标系里,画出下列函数的图像:y=0.5xy=xy=3x解:【略】

【掌握函数图像的画法:列表,描点,连线】3.练习

(1)已知正比例函数y=kx.当x=3时y=6。求k的值

(2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的?当销售金额为360元时,则售出了多少本这种笔记本?

四小结五课外作业

【反思】

由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。

第三篇: 初中数学教学案例

一、背景

新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。

二、教学片段

在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。

出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?

我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:

爸爸体重>小宝体重+妈妈体重

爸爸体重<小宝体重+妈妈体重+一副哑铃重量

我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,

我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组„„”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:

一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?

设置这道题,既有调查本节课效果的意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。

三、反思

本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。

本节课我有几个深刻的感受:

1、在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。

2、例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生的探究欲望。

3、关注学生的学习状态,随时采取灵活适宜的教学方法,师生互动,生生互动,课堂教学才更加有效。

4、学生在学习后,确实感受到“不等式的方法”就像方程的方法一样是从字母表示数开始研究解决的。这种方法可以帮助我们用数学的方式解决实际问题。

第四篇: 初中数学教学案例

【案例背景】

1、英国学者贺斯曾说:“对学科本质的认识一切教学法的基础”。所以数学教学的首要问题,不在于教学的更好方式是什么,而在于所教内容的数学本质是什么!

而数学本质是什么呢?众说纷纭,比较被大家认可的是华东师范大学的张奠宙教授的提法:本质一、对数学基本概念的理解;本质二、对数学思想方法的把握;本质三、对数学特有的思维方式的感悟;本质四、对数学美的鉴赏;本质

五、对数学精神(理性精神和探究精神)的追求。基于此,我们就开始反思新课改后的课堂教学行为:过于注重形式,追求表面的热闹,淡化了课堂教学的本质,待揭示的数学本质没有得到凸显,过程没有得到合理的证明,结论缺乏强有力的说服力。现在,在追“新”的过程中我们更多地关注和深入地思考课堂中暴露的一些问题,逐步走向成熟,使数学课堂得到了理性地回归,发生了本质的变化:教学内容的泛化回归实效、教学活动的外化回归内化、教学层次的低下回归高效,充分展现了数学课堂的魅力,学生学得扎实,获得真正的发展。以上就是我们实验中学教育共同体在本次赛课研讨时所达成的共识。

2、如何在课堂教学中凸显数学本质呢?我们殚精竭虑,反复思考、争吵,最后在新课程标准里找到了答案。

(1)针对具体的数学知识,知道知识本源和蕴含在知识背后的数学思想方法。深入挖掘教材,教材的编排蕴含了知识的本源和思想方法。

(2)在实践中怎样以数学知识本源与数学思想方法为主线展开教学设计。总之,知识是基础,方法是中介,思想才是本源。有了思想,知识与方法才能上升为智慧。数学是能够增长学生智慧的学科,我们只要抓住数学本质,与新课程理念有效结合,才能发挥数学教育的最大价值,凸显数学本色!这样做本身就是使数学课回归数学味,找回数学教学的灵魂!

3、《7.5.2一次函数的简单应用》是教学中的疑难课时,教材处理的好坏与否直接影响课堂教学的效果。我们在研究教材的时候,集思广益,发扬团队精神、抽丝剥茧,一点一点的理出本节课应该突出体现“数形结合”的数学思想,为了体现这一点就应该要让学生切身感受“数形结合”的优越性和简洁性。

【案例描述】

在此次赛课过程中,我们在进行《7.5.2一次函数的简单应用》这一教学内容设计时,我们尝试了两种不同的教学方法。

教法一:依托教材,遵循教材顺序开展教学

以小聪、小慧去旅游的例子为线索,让学生体会一次函数的图象与二元一次方程组的解之间的关系,然后利用图象的交点让学生明白利用图象的简洁性,同时附带介绍近似解等概念,但在教学中我们发现:当我们需要将问题中的两个函数的图象画在同一个直角坐标系中时遇到了困难。为什么是s136t和s226t10这两个函数?下面是这教学片断的师生对话:

师:这个问题我们能否用新的方法(数形结合)来解决。

生:可以利用函数的图象。(部分学生回答)

师:很好,若要利用函数的图象,我们首先需要知道什么?

生:函数的解析式。

师:那函数的解析式是怎样的?

生1:s136t和y226t。

师:还有不同答案吗?

生2:s136t和s226t10

师:为什么有两种不同的答案?我们需要的是哪一种?

生:第二种。

师:为什么?

(全班学生迟疑了片刻,有几个好生举手发言了)

生1:因为此两个函数要画在同一个直角坐标系中,它们的函数值y要相同;生2:它们两个人出发的时间相同;

生3:

这个问题本身使部分学生感到比较难理解,而我们又想利用此两个函数的图象的交点让学生体会直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系,更是难上加难。因此,后来我们没有采用这种教学设计。

教法二:以“数形结合”为引领,大胆改编教材的呈现模式,切合学生实际教学思路。

我们先让学生了解一次函数和二元一次方程的关系,然后再利用“数形结合”的思想方法让学生体会直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系,让学生明白利用图象的简洁性。这样处理的好处是:既分解了本节课的难点,又为利用图象法解决例题埋下了伏笔。

【案例分析与反思】

教法一只是按照教材规定的内容进行教学,教学方法也比较传统,教学过程侧重于知识的落实,学生虽然参与了学习,但学习热情较为低落。可以说,教师基本上是在“教教材”,缺乏数学本质的体现。而教法二中,以数学思想为主线,设置问题串,让学生在不断的演练中体会到“数形结合”的优越性下面我就来谈谈我们是如何“挖掘教材内涵凸显数学本质”。

一、分解教材内容,确定学习目标

在磨课过程中,我们对教材的问题逐题加以分解,对照数学本质,确定学习目标为:会综合运用一次函数的解析式和图象解决简单实际问题;了解直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系;会用一次函数的图象求二元一次方程组的解(包括近似解)。

二、结合数形结合的要求,选择教学素材

1、一是创造性地处理教材

教材中只用一个例题来解决本节课的重难点,我们觉得难度较大。所以我们先这样的一个等式y=x+1让学生了解一次函数和二元一次方程的关系,再让学生了解直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系。

2、创造开发生成性的教学素材

在教学设计中,讲解例题时,当做出函数的图象时我们设计了这样一个问题:

从图象中你还能了解到哪些信息?符合新课标的要求,不同的人在数学上得到不同的发展。

三、运用数学思想解决问题,培养学生创新意识

1、让学生经历数学知识的形成与应用过程。

让学生经历数学知识的形成与应用过程,从而更好地解释数学知识的意义,掌握必要的基础知识与技能,发展应用数学知识的意义与能力,增强学好数学的愿望和信心。新教材为学生提供了大量的数学活动线索和丰富的数学活动机会,为学生的数学学习构筑起点。通过我们的再次讨论,发现我们这节课在这方面还体现的不够,没有回到函数的真正本质:一般地,在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量。

2、构建“以问题为中心”的讨论式数学模式。

通过教师创设情景,启发引导,经过学生自主探索、合作交流,引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生掌握基本的数学知识与技能、数学思想和方法,使学生具有初步的创新精神和实践能力。“以问题为中心”的讨论式教学模式具体地说是由“问题情境、合作讨论、理性概况、应用创新、反思提高”五个环节组成的一种讨论式学习的教学模式。

3、注重数学思想的运用,提高解决问题的能力。

在教学的最后一个环节,我们设计了这样一道开放题:

根据此函数的图像,你能设计出它的实际背景吗?

教学中,应当有意识、有计划地设计教学活动,引导学生体会数学思想,感受数学的规律性、可循性,不断丰富解决问题的策略,提高解决问题的能力。

本文来源:http://www.xxkjfw.com/jiaoyuqiuxue/72090/

推荐内容